9. Vorlesung "Grundlagen der Produktgestaltung"

Inhalt und Termine, WS 2008/2009

Kapitel 1 Einführung

21.10. 1. Einführung

28.10. 2. Beispiel "Intelligentes Herbizid", Miniprojekt "Produkt-Analyse"

Kapitel 2 Grundlegende Prinzipien

04.11. 3. Film "Produkt-Gestaltung"

11.11. 4. Film "Produkt-Gestaltung"

18.11. 5. Film, Produkt-Gestaltung", Grenzflächen, Benetzung, Kapillardruck,

25.11. 6. Innovationsmanagement

02.12. 7. Rollenspiel

09.12. 8. Konzeptuelle Produktgestaltung

Kapitel 3 Beispiel "Kristallisation"

16.12. 9. Thermodynamisches Gleichgewicht

13.01. 10. Kristallographie, Habitus

20.01. 11. Keimbildung, Wachstum, Partikelgrößenverteilung

27.01. 12. Auslegung und Betrieb von Kristallisatoren,

Kapitel 4 Beispiel "Kolloidale Systeme"

03.02. 13. Eigenschaften und Anwendungen von kolloidalen Systemen, Stabilität

10.02. 14 Wechselwirkungen, DLVO-Theorie, Aggregation

login: student pwd: materialien_tvt

Results of the role play - questions and answers

- •Development Managers to Markting Managers: What is our **budget**? capacity: 10 % of our current production capacity in regular yogurth should be switched to probiotic (simple guess: appr. 200 t/day) cost: The price of the probiotic product can be higher that that of regular yogurth. Therfore, the production costs may be 20 % higher than for the production of regular yogurth.
- •Development Managers to Industrial Researchers: How about **technology**? <u>fermentation:</u> a new fermentation line has to be built, to produce the probiotic bacteria.

<u>coating</u>: A coating process is needed to protect the bacteria during their passage of the stomach.

The rest of the process is unchanged. The existing equipment can be used.

•Industrial Researchers to Academic Researchers: How about cooperation? contract about: exclusive licence – finances - publication in journals: licencing of the bacteria and the technology of their preparation (coating) long-term research cooperation publication only after some period of time (i.e. 3 years)

2

1

Produktspezifikation

"Nowadays, chemical products are not sold for what they are, but for what they do!"

... dementsprechend werden Produkte spezifiziert.

Eine Produktspezifikation ist die detaillierte Beschreibung des Produktes, anhand der festgestellt werden kann, ob das gekaufte Produkt den Kunden-Anforderungen entspricht.

Produkt Datenblatt:

- Produktname
- Beschreibung
- Spezifikation
- · Hinweise zur Anwendung, Verwendung
- Gefahrenhinweise
- rechtliche Bestimmungen

Beispiele für Produktspezifikation (1)

aus: Judustrial Chemicals, 1994 G. Again Chapter 5

THE TYPICAL SPECIFICATION OF AN INDUSTRIAL CHEMICAL

How does a modern scientific paper characterize a chemical? We randomly chose an example of the following cyclohexanone derivative:

Characterization of this material appears in the Journal of Organic Chemistry as follows [2]:

 $3, 3, 5\hbox{-}Trimethyl\hbox{-}5\hbox{-}(4\hbox{-}methyl phenyl) cyclohexan one:$

- mp 64-65° (hexane).
- IR (nujol) 3050, 3010, 2950, 2850, 1700, 1500, 1280, 810 cm⁻¹. NMR (CCl₄) 7.4–7.0 (q, 4H), 3.3–1.7 (m, 6H), 2.3 (s, 3H), 1.3 (s, 3H), 1.1 (s, 3H), 0.4 (s, 3H) ppm.

 MS m/e 248 [M+NH], 231 (M+1), 230, 215, 132.

- Anal. Calcd: C 83.43; H 9.63. Found: C 83.23; H 9.78.

You can study a thousand-and-one technical data sheets for simple or complex commercial materials. You will probably not find in any of them MS, IR, NMR data or even an elementary analysis of carbon or

Let us glance at the different specifications for different grades of the "simple" material sodium hydroxide (Table 5.1) [3]:

TABLE 5.1 TYPICAL SPECIFICATIONS FOR VARIOUS GRADES OF SODIUM HYDROXIDE (wt. %)

	Technical	NF	FCC	Reagent	Electronic
assay (NaOH) Na ₂ CO ₃ heavy metals (as Ph)	CO ₃ vy metals (as Ph) vy metals (as Ag) ((Ph) cury (Hg) nic (As) ussium (K) (Fe) el (Ni) nonium hydroxide ppt ride (Cl)	95.0 min 3.0 max 0.003 max to pass test	95.0 min 3.0 max 0.003 max	97.0 min 1.0 max	98.0 min 0.4 max
lead (Ph)			0.001 max 0.00001 max 0.0003 max	0.002 max	0.001 max
mercury (Hg) arsenic (As)				0.00001 max	0.00001 max
potassium (K) iron (Fe)				0.02 max 0.001 max	0.01 max 0.0003 max
nickel (Ni) ammonium hydroxide ant				0.001 max	0.0005 max
chloride (CI) sulfate (SO ₄)			•	0.02 max 0.005 max	0.02 max 0.001 max
phosphate (PO ₄)				0.003 max 0.001 max	0.0005 max 0.0002 max
nitrogen compounds (N)				0.001 max	0.0002 max

aus: Agam G.: Industrial Chemicals


Beispiele für Produktspezifikation (2)

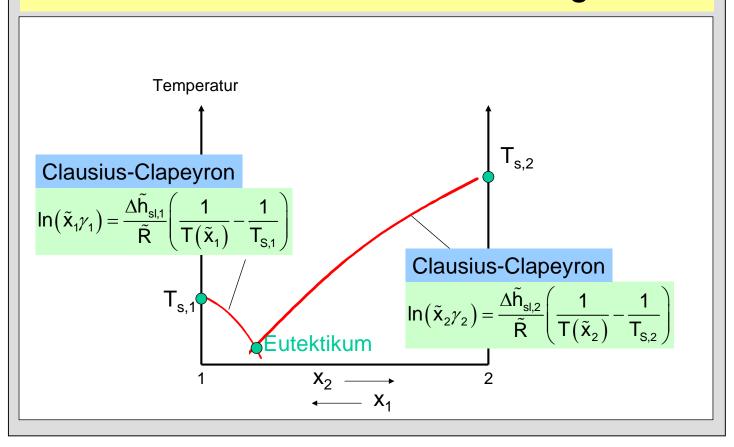
Spezifikationen für Gemische	Häufigkeit
Specific Gravity	********
Appearance	*******
Solubility	******
Color	*********
Flash Point	*******
Assay	******
Viscosity	******
Boiling Point Range	*******
Moisture	******
Refractive Index	******
Melting Point/Range	******
Freezing Point/Range	******
Vapour Pressure	*****
рН	*****
Impurities (specific)	****
Bulk Density	****
Particle Size	***
Impurities (ion)	***

5

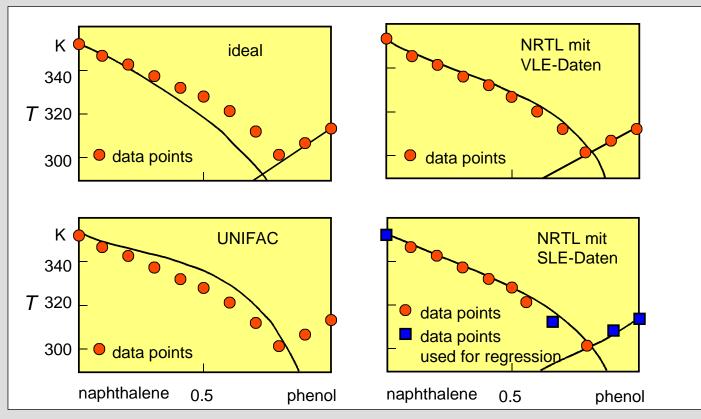
Beispiele für Produktspezifikation (3)

Spezifikationen für Erdölprodukte	Produkttyp
Acidity, Total (mg KOH)	Turbine fuel, lubricating oils
Aniline Point	Diesel fueal, lubricatin oils
Aromatics	Turbine fuel, lubricating oils
Ash	Diesel Fuel
Bromine Number	Various
Caloric Value	Fuels
Carbon Residue	Diesel fuel, lubricatin oils
Cetane No.	Diesel fuel
Cloud Point	Diesel fuel
Color	Wax
Cone Penetration	Lubrication grease, wax
Copper Strip Corrosion	Gasoline, turbine fuel, diesel fuel
Distillation Range	Gasoline, Kerosine, Turbine fuel, wax
Dropping point	Lubricating grease

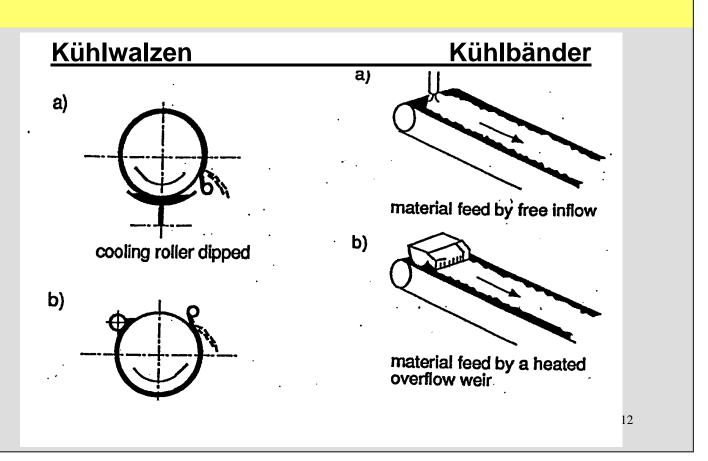
Erzeugung fester Produkte

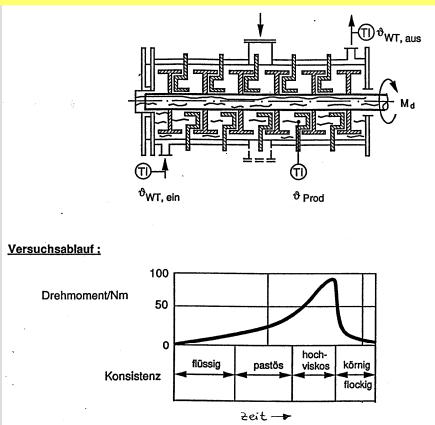

Mindestens 60 Prozent der Produkte der Prozessindustrie sind Feste Produkte (Kristalle, Gläser, Polymerisate, Agglomerate, Pulver, Stränglinge, Chips, Pastillen, ...).

Feste Produkte können aus der Gas- oder Flüssigphase aufgrund von


- glasartiger Erstarrung
- kristalliner Erstarrung
- Polymerisation (hier nicht behandelt)

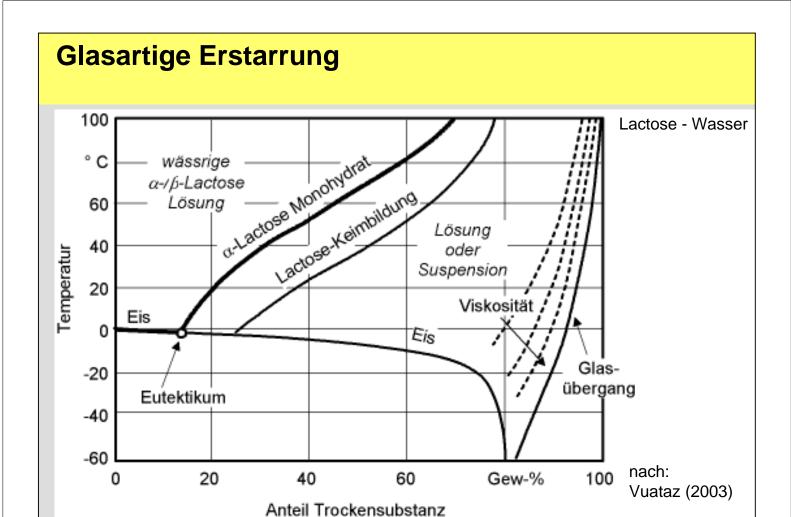
entstehen.


Kristallisation: binäres Phasendiagramm

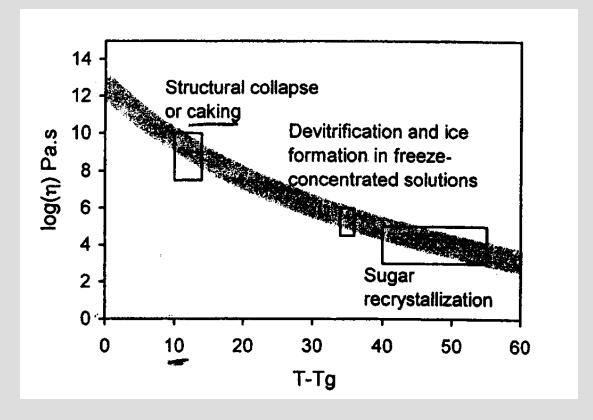

Berechnung eines Phasendiagramms (Eck, 1996)

Erstarrung von Schmelzen

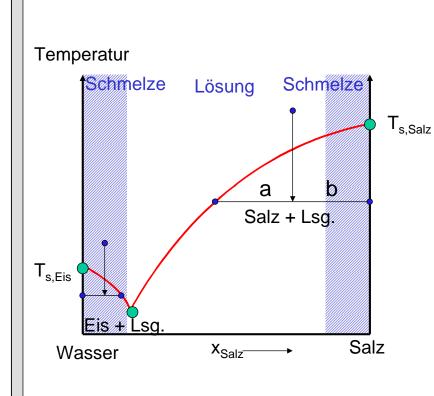
Erstarrung von Schmelzen im Schaufelmischer



13


Glasartige Erstarrung

Kristalle besitzen eine durchgehende Ordnung; die Bausteine der Kristalle schwingen um ihre Gleichgewichtslagen (Gitterpunkte). Kristalle lassen sich nicht plastisch verformen. Platzwechselvorgänge sind sehr selten. Flüssigkeiten besitzen nur eine Nahordnung. Sie haben eine »Löcherstruktur«; Platzwechselvorgänge sind häufig. Sie sind leicht verformbar. Eine unterkühlte Flüssigkeit hat alle Eigenschaften einer Flüssigkeit, ist aber nicht im Gleichgewichtszustand.


Ein Glas hat alle Eigenschaften einer Flüssigkeit außer einer: der Verformbarkeit. Nicht kristallisierbare Stoffe gehen beim Abkühlen ihrer Schmelzen in den Glaszustand über; die Übergangstemperatur nennen wir die Glastemperatur T_g . Der Ordnungszustand im Glas entspricht dem einer Flüssigkeit bei T_g . Unterhalb T_g kommen Platzwechselvorgänge selten vor; die Molekeln im Glas schwingen lediglich um ihre Gleichgewichtslagen. Auch die Scherung ist stark behindert; Gläser sind extrem viskos. Wir nennen den Glaszustand den einer eingefrorenen Flüssigkeit.

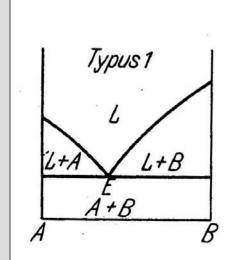
Bedeutung der Viskosität bei glasartiger Erstarrung

Kristallisation im Phasendiagramm

Hebelgesetz:

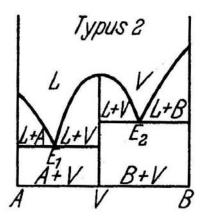
 $\frac{a}{b} = \frac{\text{Menge Salzkristalle}}{\text{Menge Lösung}}$

a + b = Ausgangsmenge

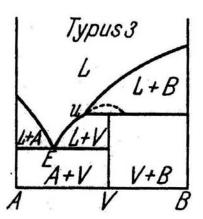

Lösung:

große Temperaturdifferenzen --> kleine Feststoffgehalte

Schmelze:

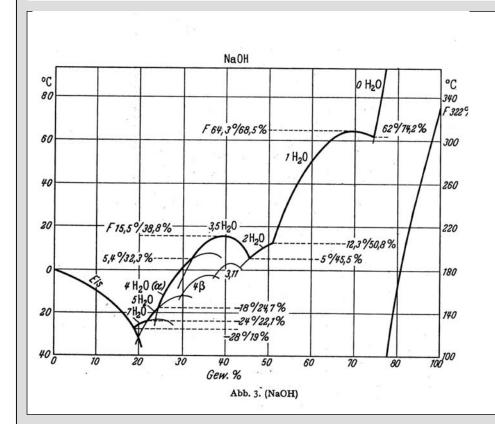

kleine Temperaturdifferenzen
--> große Feststoffgehalte

Phasendiagramm-Typen

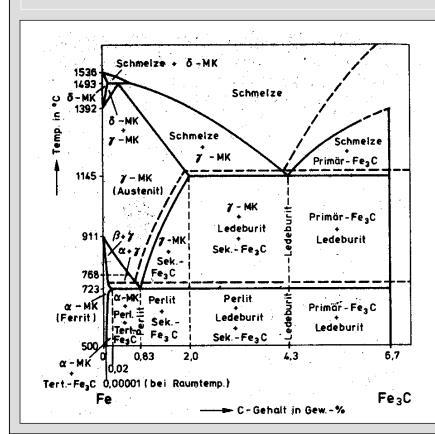


eutektisch

eutektisch mit Verbindungsbildung



eutektisch mit Verbindungsbildung und "verdecktem" Maximum


aus: D'Ans-Lax

Phasendiagramm von NaOH-Wasser

aus: D'Ans-Lax

z.B. auch Eisen-Kohlenstoff Diagramm

- metastabiles System
- -- stabiles System

aus: W. Dohmke "Werkstoffkunde und Werkstoffprüfung" Girardet Verlag, 1986

ternäres Phasendiagramm

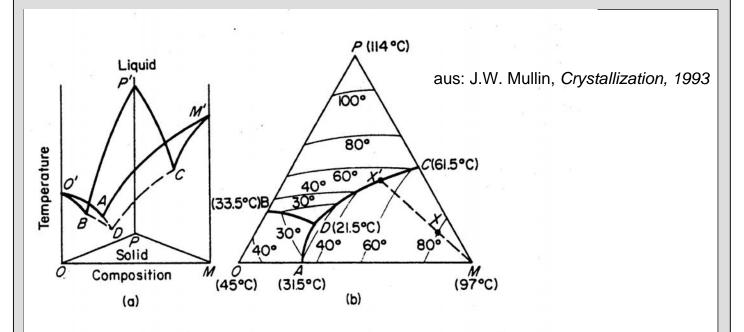
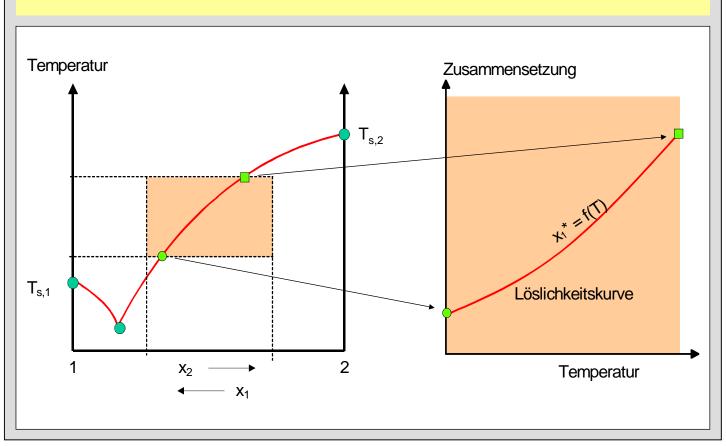
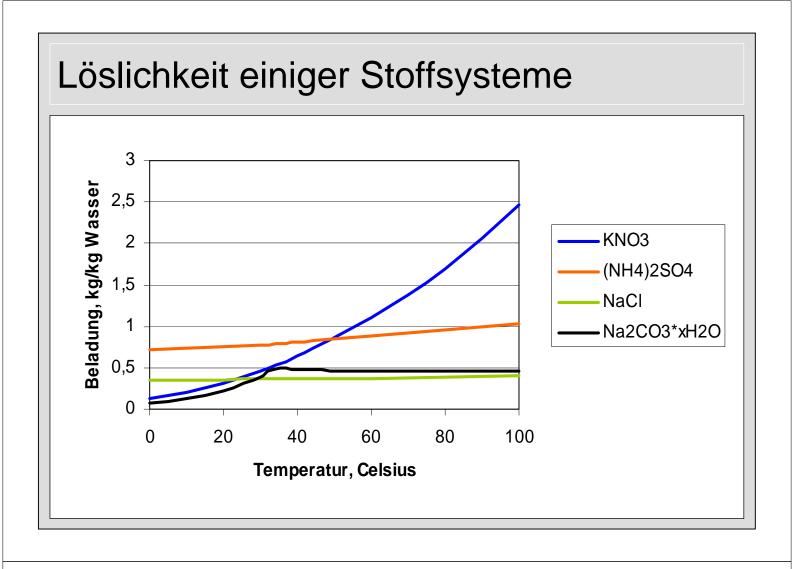
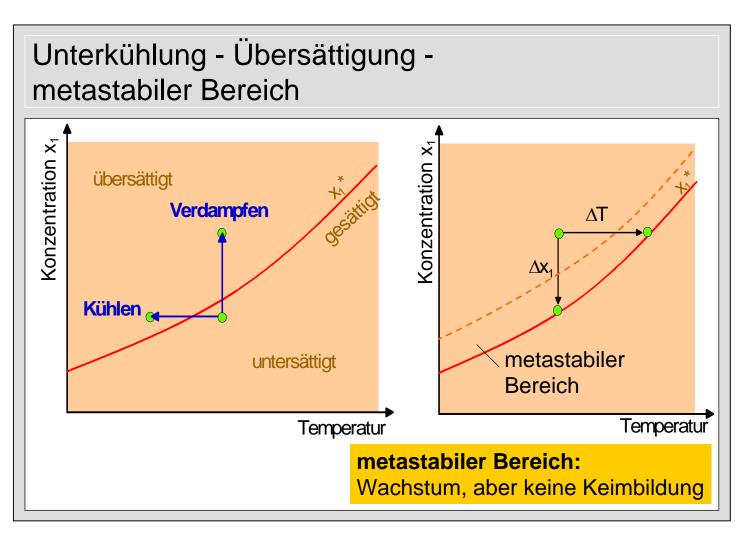





Figure 4.20. Eutectic formation in the three-component system 0-, m- and p-nitrophenol: (a) temperature-concentration space model; (b) projection on a triangular diagram

Löslichkeitskurve

Konzentrationsmaße

Massenanteil

 $X_i, Y_i,$

kg/kg Lösung

Massenbeladung

 $X_i, Y_i,$

kg/kg Lösungsmittel

Konzentration

 C_{i}

kg/m³ Lösung

analog:

Molanteil

 \tilde{X}_i, \tilde{Y}_i

mol/mol Lösung

Molbeladung

 $\tilde{X}_{i}, \tilde{Y}_{i}$

mol/mol Lösungsmittel

Molarität

 M_i, \tilde{c}_i

mol/I Lösung

Übersättigungsmaße

thermodynamische Triebkraft

$$\Delta \mu_{i} = \tilde{\mathsf{R}}\mathsf{T}\mathsf{In}\!\left(\frac{\mathsf{a}_{i}}{\mathsf{a}_{i}^{\star}}\right)$$

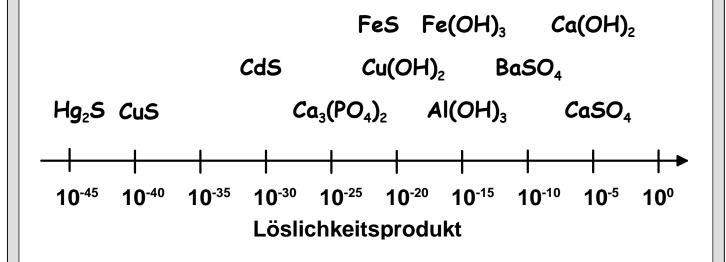
$$\frac{\Delta \mu_{i}}{\tilde{R}T} = \ln \left(\frac{a_{i}}{a_{i}^{*}} \right) = \nu_{i} \ln S_{a,i}$$

Aktivität
$$a_i = \tilde{c}_i \gamma_i$$

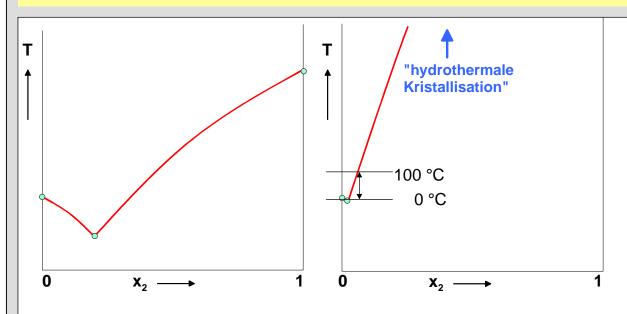
reales Übersättiguns verhältnis

$$S_{a,i} = \frac{a_i}{a_i^\star} = \frac{\widetilde{c}_i \gamma_i}{\widetilde{c}_i^\star \gamma_i^\star} = \frac{c_i \gamma_i}{c_i^\star \gamma_i^\star}$$

ideales
Übersättigungs-
$$S_i = \frac{c_i}{c_i^*}$$
 verhältnis


$$\text{für } 1 < S_i < 1,1 \qquad \text{In } S_i \cong S_i - 1 \cong \frac{c_i - c_i^*}{c_i^*} = \sigma_i$$

relative Übersättigung


 σ_{i}

Fällung schwerlöslicher Elektrolyte

--> sehr kleine Löslichkeitsprodukte!

Kristallisation <--> Fällung

Kristallisation aus Lösungen und Schmelzen Fällung schwerlöslicher Salze