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 of  the catalyst ink and the processing conditions of  the catalyst layer, in particular the conditions during the drying step, the porosity of  
the catalyst layer can be optimized. With regard to direct membrane coating as an efficiency-optimized manufacturing process, 
multilayers offer the possibility of  compensating for the unfavorable effect of  crack formation due to interactions of  the catalyst ink 
with the PFSA membrane. Another possibility for the tailoring of  the properties of  the catalyst layer is the inclusion of  additives in the 
layers close to the substrate, which can for instance reduce cross-over effects during operation of  the fuel cell or the electrolyzer. In 
previous studies for direct methanol fuel cells (DMFC), performance improvements have already been achieved with the aid of  catalyst 
gradients within the electrode layer [7-9] and cross-over effects have been minimized due to adjusted porosity gradients [10]. 
In view of  the possibilities that arise from the systematic adjustment of  the microstructural properties of  the catalyst layers for both 
PEM-FC and PEM-WE, different concepts for the coating and drying of  the multilayers are being investigated. In addition to sequential 
coating, the simultaneous coating of  layers offers an interesting possibility for the further development of  the production process [11]. 
With regard to the drying of  the catalyst layers, the influence of  different drying conditions on the microstructure is also investigated. 
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Interactions beween the solvents of catalyst ink and the 
membrane lead to crack formation
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Crack Formation during Catalyst Layer Production

1-Propanol

Ethanol

Water

exposure time

Influence of the substrate on crack formation 

Membrane direct coating

 φ :   relative humidity
 T  :   liquid temperaturef

 T :   gas temperatureg

 K :   liquid side kinetic separation factor L 

         (according to E.U. Schlünder [4])

  φ

N :   Evaporation flow of a component       i 

r  :   relative evaporation flux of a component      1

x :   Molar fraction of the liquid1 

y :    Molar fraction of the gas phase     1
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W. Schabel, Lecture Mass Transfer II, 2022

Drying parameters influence selectivity
and therefore the solvent composition 
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Solvent coposition influences the 
ionomer structure        unselective drying

Swelling of the membrane in contact with solvents

Modifications of the ink fomulation 

Current challenges for maturity phase
for both Electrolyzers and Fuel Cells

Low porosity 

High porosity 

O  2H O 2

O  2

Analysis of the drying process and crack formation

Mean layer thickness
of all layers between 
8.2 µm and 8.7 µm.

R:    Reference (1-propanol/water)
PG: Propylenglykol
EG: Ethylenglykol

α: Heat transfer coeffcient 
T : Drying temperature

Substrate

Layer thickness

Ink solvents

Drying conditons

Approaches for reducing crack formation

Innovative Catalyst Layer Design..Leading to Different Porosities of the Dried Catalyst Layer

Other approaches: 

High catalyst laoding

Low catalyst laoding
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 Efficient mass transfer of the educts/products
 

> 50 % of the stack cost because of the limited choice of materials for the CCM 

Many three phase boundaries as electrochemical active surface area

Requirements for an ideal layer structure 

Defect and crack free layer (degradation)

!

REM picture: Dr. Müller, KIT      
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               Particle properties
 
   G    shear modulus (deformability)
   M    coordination number
    particle volume fraction Φrcp

   R    particle size

Solvent properties

       surface tension γ

Process properties

   evaporation rate 
   substrate
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PEM Water Electrolysis (PEMWE)
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 a) Additives, e.g. carbon nanotubes (CNT) 
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Simulation of the selective drying process

Increasing catalyst layer thickness leads to pronounced 
crack formation. 

Critical crack thickness according to Sing and Tirumkudulu:  

The start of crack formation 
during film drying 

coincides: 
 

v  with the increase in film temperature 
  (= start of falling rate period)

v  with the end of film shrinkage 
(EOFS)

 

Understanding changes 
during the first drying period to 

influence crack formation

Simulation of changes in solvent composition in the 
ink leading to the critical cracking point during drying

 considering selective evaporation.

Particle-ionomer
 interactions

The transition from constant- to 
falling-rate period during drying 
is identified as the critical point 
for the onset of crack formation.
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Targeted adjustment of drying parameters 
tailors the drying process, enabling the 
generation of distinct crack 
morphologies and relative crack areas
  
v  drying temperature 
  
v  air overflow

relative humidity orv  
     air pre-loading with ink solvents

Prevention of crack formation with pre-loading
of the convective drying air is possible.

v  Water accumulation and flooding during operation 
                     impairs gas transport and block electrochemically active sites

v   Disrupt electronic and protonic conduction pathways
                     impairs efficiency of charge transfer

v  Acceleration of (membrane) degradation processes
 

Current CCM design aims to minimize cracking, as a homogeneous layer morphology is crucial for consistent 
performance and long-term durability.

v  Enhance mass transport of water and reaction gases within the catalyst layer

Positive effects Different crack patterns in catalyst layers 

Underlying mechanisms leading to the formation of different crack morphologies are unknown.

Negative effects
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