

Karlsruhe Institute of Technology

Thin Film Technology Lukas Lödige lukas.loedige@kit.edu +49 721 608 46990

Thin Film Technology Thilo Heckmann thilo.heckmann@kit.edu +49 721 608 41426

About Mass Transfer of Multicomponent Electrolyte Solvent Mixtures during Recycling of Lithium-ion Batteries

Lukas Lödige^{1,2}, Thilo Heckmann^{1,2}, Philip Scharfer^{1,2}, Wilhelm Schabel^{1,2}

¹ Thin Film Technology (TFT), Karlsruhe Institute of Technology (KIT), Karlsruhe ² Material Research Center for Energy Systems (MZE), Karlsruhe

Motivation	Process flow chart	Challenges
Improved recycling is inevitable	Typical cost share of Electrolyte solvents Binder (Decomposition) Mechanical	Predict optimum residual

www.kit.edu

doi: 10.1002/ente.202000889

Acknowledgements

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

The authors would like to acknowledge financial support of the Federal ministry of Education and Research (BMBF) via the greenBatt cluster-project "LOWVOLMON" (Grant number: 03XP0354C).

10.1016/j.ces.2006.12.062

