

**Prof. Dr.-Ing. Matthias Kind** 

Institut für Thermische Verfahrenstechnik Dr. –Ing. Thomas Wetzel

## Wärmeübertragung I

## 2. Übung (Bilanz)

### 1. Aufgabe

Ein Liter Wasser soll mit Hilfe eines elektrischen Tauchsieders zum Sieden gebracht werden. Das Wasser hat die Anfangstemperatur  $T_A=14\,^{\circ}\mathrm{C}$ .

Berechnen Sie den zeitlichen Verlauf der mittleren Wassertemperatur  $T_w(t)$ .

Wie lange dauert es, bis die Siedetemperatur  $T_s = 100$  °C erreicht ist, wenn der Tauchsieder die konstante elektrische Leistung von  $\dot{W}_{el} = 1000$  W aufnimmt?

Anmerkung: Wärmeverluste an die Umgebung sowie die Wärmekapazitäten des

Tauchsieders und des Behälters dürfen vernachlässigt werden.

Daten: Mittlere spez. Wärmekapazität des Wassers  $c_{p,W} = 4.19 \frac{kJ}{kg \cdot K}$ 

Dichte des Wassers  $\rho_W = 1000 \frac{\text{kg}}{\text{m}^3}$ 

#### 2. Aufgabe

In einem Rührkessel soll eine Flüssigkeitsmasse  $M_L$  mit der Anfangstemperatur  $T_A$  und der mittleren spez. Wärmekapazität  $c_{p,L}$  erwärmt werden. Berechnen Sie den zeitlichen Verlauf der Flüssigkeitstemperatur  $T_L(t)$ , wenn der Kessel (für t>0) durch eine eingebaute Heizschlange beheizt wird, deren äußere Oberflächentemperatur  $T_O$  durch innen kondensierenden Dampf konstant gehalten wird. Der Wärmeübergangskoeffizient  $\alpha$  zwischen Heizschlangenoberfläche A und Rührkesselinhalt sei dabei konstant.

Anmerkung: Wärmeverluste an die Umgebung, die zugeführte Rührerleistung und die zeitliche Änderung der Enthalpie der Heizelemente und der Kesselwand sind vernachlässigbar.

# 3. Aufgabe

Versuchen Sie, die Aufgaben 1 und 2 ohne die in den Anmerkungen angegebenen Vernachlässigungen zu lösen. Berücksichtigen Sie die auftretenden Wärmeverluste (näherungsweise) durch einen konstanten Wärmedurchgangskoeffizienten  $k_V$  zwischen Flüssigkeit und Umgebung.

Zahlenangaben für Aufgabe 3.1 (Tauchsieder):

| Masse des Tauchsieders und des Behälters             | $M_S = 400 \mathrm{g}$                        |
|------------------------------------------------------|-----------------------------------------------|
| mittlere spez. Wärmekapazität                        | $c_{p,S} = 0.5 \frac{\text{kJ}}{\text{kg·K}}$ |
| äußere Oberfläche des Behälters                      | $A_V = 0.1 \mathrm{m}^2$                      |
| Umgebungstemperatur                                  | $T_U = 20 ^{\circ}\text{C}$                   |
| mittlerer Wärmedurchgangskoeffizient Wasser/Umgebung | $k_V = 10 \frac{W}{W}$                        |