Institut für Thermische Verfahrenstechnik

Prof. Dr.-Ing. Matthias Kind

Dr.-Ing. Thomas Wetzel

Wärmeübertragung I

1. Übung (Einleitung: Bilanz, Kinetik)

1. Aufgabe

In einer Thermosflasche befindet sich 11 Wasser bei einer Temperatur von 50 °C. In die Flasche wird ein Glas Wasser (0,21) mit der Temperatur 95 °C zugegeben. Zu berechnen: Temperatur des Wassers nach dem der Inhalt gut durchmischt wurde. Wärmekapazität und Dichte von Wasser dürfen als temperaturunabhängig betrachtet werden.

2. Aufgabe

Die Wärmeabgabe des Menschen ist ca. 100 W. Zu berechnen: Die Temperatur im Raum ($200\,\mathrm{m}^3$, 10 Studenten, 1,5 h) nach der Übung, wenn der Raum als adiabat betrachtet wird. Die Temperatur am Anfang der Übung beträgt 20 °C, die volumetrische Wärmekapazität der Luft $1\frac{\mathrm{kJ}}{\mathrm{m}^3\cdot\mathrm{K}}$.

3. Aufgabe

Eine Getränkedose ($M=0.5\,\mathrm{kg}$; $c_p=4\frac{\mathrm{kJ}}{\mathrm{kg\,K}}$; $A_{ges}=0.03\,\mathrm{m}^2$) hat eine Temperatur von 40 °C und wird 5 min lang im Wasser abgekühlt. Der Wärmeübergangskoeffizient von der Dosenoberfläche zum Wasser beträgt $500\frac{\mathrm{W}}{\mathrm{m}^2\cdot\mathrm{K}}$. Das Wasser und das Getränk sind beide vollständig durchmischt. Das Wasser wird durch die Wärmeabgabe der Dose nicht erwärmt.

Zu berechnen ist die Temperatur des Doseninhalts

- 1. falls $T_{wasser} = 10 \,^{\circ}\text{C}$
- 2. falls $T_{Wasser} = 25 \,^{\circ}\text{C}$
- 3. falls $T_{Wasser} = 10 \,^{\circ}\text{C}$, aber die Dose nur bis zur Hälfte im Wasser steht (der obere Teil der Dose kann dabei als adiabat betrachtet werden)
- 4. falls die Dose in der Luft abgekühlt wird ($T_{Luft} = 10\,^{\circ}\text{C}$, Wärmeübergangskoeffizient Dose \rightarrow Luft beträgt $50\,\frac{\text{W}}{\text{m}^2 \cdot \text{K}}$)